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Many quality characteristics of products or services are commonly evaluated
on ordinal scales with a finite number of categories. A systematic analysis of
categorical variables collected over time may be very useful for a profitable
management strategy. In order to measure customer satisfaction or quality
improvement in a process, two or more quality characteristics are often conjointly
measured and summarized by suitable indexes. A common practice suggests
evaluating a synthetic index by mapping each outcome of a multivariate ordinal
variable into numbers. This procedure is not always legitimate from the
measurement theory point of view. In this paper an alternative approach
based on the algebraic theory of the ordered sets is proposed. This method
avoids mapping multivariate components into numbers. Multivariate ordinal
variable components are synthesized by ordering the multivariate sample space.
The ordering criterion is defined on the basis of the specific characteristics of the
process at hand. Practical effects in the use of this method are shown on a series
of application examples.

Keywords: Multivariate ordinal variables; Statistical process control;
Multidimensional ordinal structures; Synthesis maps; Ranking and ordering;
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1. Introduction

In assessing the characteristics of a product, many practical problems involve the
use of ordinal scales with a finite number of categories. The levels of these scales are
terms such as good, bad, medium, etc., which can be ordered according to the
specific meaning of the characteristic at hand.

When ordinal data are obtained by evaluating at the same time two or more
features of the same product, we are in presence of a ‘multidimensional ordinal
structure’.

This kind of structure is widely employed both in social and behavioural sciences
and in decision-making applications. In making choices, for example, it is reasonable
to have to compare different alternatives with a variety of ordinal attributes or
dimensions (Roberts 1979, Roy and Bouyssou 1993, Moshkovich et al. 2002).

Multidimensional ordinal structures are also considered in the field of quality
control when a series of attributes of a product are measured by linguistic or
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qualitative scales (Clifford 1959, Liu and Singh 1993, Liu et al. 1999, Taleb and
Limam 2002). The conjoint measure of quality characteristics (i.e. comfort, design,
sturdiness, etc.) of a manufacturing product is a typical multidimensional problem.
The same problem occurs when measuring the quality of a service (Parasuraman
et al. 1985).

From an algebraic point of view, a multidimensional ordinal structure may be
seen as the product structure of a number of simpler one-dimensional ordinal sets.
In literature different approaches have been developed for managing complex
multidimensional structures. The area of the measurement theory interested in
the simultaneous measurement of composite products is commonly called conjoint
measurement (Krantz et al. 1971, Roberts 1979). The problem of aggregating
and ordering multivariate ordinal data has been widely studied also in statistics
(Tukey 1975, Agresti 2002).

A common practice consists of evaluating synthesis indices by mapping
multivariate ordinal data into numbers. Nevertheless, this procedure is not always
legitimate from the measurement theory point of view (Roberts 1979). Moreover,
the sample dimension and the exiguous number of scale levels can cause some
restriction in their application.

The aim of this paper is to propose a general approach for data aggregation and
management of multidimensional ordinal problems, based on the algebraic theory
of the ordered set (lattice theory) (Donnellan 1968). Product structures may be
transformed into simpler ordered sets by suitable map-functions established by the
decision-makers according to the specific characteristics of the process at hand.

Based on this approach, two kinds of problems can be faced:

1. The aggregation of a sample of results for a univariate ordinal variable
(Franceschini et al. 2005).

2. The synthesis of different components of a multivariate ordinal variable
(Franceschini and Galetto 2001).

The fundamentals of the lattice theory and its applications to the multidimen-
sional ordinal structures are discussed in section 2. The problems of the aggregation
of a sample of results for a univariate ordinal variable, and the synthesis of
multivariate ordinal data, respectively, are analysed in sections 3 and 4. Results
obtained applying lattice theories are compared with the ‘classical’ methods
(mapping of ordinal variables into numbers). The paper provides many illustrative
examples of practical effects of both approaches.

2. Ranking and lattice theory

The multidimensional ordinal structures can be represented by the algebraic theory
of the ordered sets (Donnellan 1968). After a brief description of the ordering theory
applied to multidimensional ordinal structures, this methodology will be used for
the definition of a ranking of elements belonging to a finite multidimensional ordinal
sample space.

Definition: Let us consider a finite ordered set P; P is a chain (or a totally ordered
set) if, for all x, y2P, either x � y or y � x, with x, y any two categories of
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an ordinal variable X (i.e. any two elements of P are comparable) (Davey and

Priestley 1990).

Usually, a finite ordered set is commonly represented by a Hasse diagram:

a configuration of nodes (the elements of the set) and arcs, indicating the covering

relation (Roberts 1979). So it is easy to detect from the Hasse diagram (see figure 1)

whether a category of X is lower than another: x (low) is lower than y (high)

if there is a sequence of connected line segments moving upwards from x to y.

Two categories are not comparable if no arc is drawn between them in a Hasse

diagram.
Now, let consider two ordinal variables X and Y: the former measures the noise

of a car engine according to three categories (high, medium and low), the latter

measures the noise of a car fan with four categories (moderately noisy, quite noisy,

significantly noisy and very noisy). Let (X,Y) be the bivariate ordinal variable

that measures conjointly the noise of the car engine and of the car fan. The possible

outcomes of (X,Y) are the elements of the Cartesian product of the two category

sets X and Y. The order set theory states that the Cartesian product of two chains

is still an ordered structure, but it is not a chain. Some elements are not comparable

with each other (see figure 2).

Definition: A partially ordered set (poset) is a set P characterized by a binary order

relation. It is not required that any two elements of P are comparable.

If x and y are two elements of a poset P, even if they cannot be comparable with

each other, for both of them we can identify an element of P which is equivalent

or greater with respect to the ordered relation of P. A finite poset turns into a chain

when all its elements are pairwise comparable.

Definition: A complete lattice P is a poset in which the supremum (the least upper

bound) and the infimum (the greatest lower bound) exist for all subsets of P.

The finite set of possible outcomes of the bivariate ordinal variable (X, Y) in

figure 2 is a complete lattice. In other words, the Cartesian product of X and Y is

intrinsically ordered (it sounds to affirm that a ‘medium noisy’ of the engine and

a ‘quite noisy’ of the fan is minus a ‘high noisy’ of the engine and a ‘significant noisy’

Low

Medium

High

Figure 1. Hasse diagram of an ordinal variable X, defined on a three categories scale: low,
medium and high.
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of the fan). Unfortunately, the intrinsic order does not imply the total ordering of
the set. Some elements are non-comparable: for example, the outcomes ‘medium,
quite noisy’ and ‘low, very noisy’.

In some cases, however, the elements of a non-comparable pair of outcomes
are not equally important, from a decision-making point of view. For example,
if the variable X is more influent than Y, the outcome ‘low’, ‘very noisy’ is probably
preferable to ‘medium’, ‘quite noisy’. In such cases the process ‘decision-maker’ can
adopt a map function which assigns to any outcomes of the multivariate ordinal
variable a specific ranking (Davey and Priestley 1990).

Definition: Let P indicate the complete lattice of all possible outcomes of a
multivariate ordinal variable (X1,X2, . . . ,Xn) and let Q be a finite poset, a map
function is defined as ’: P!Q (see figure 3).

A ranking of all possible outcomes of a multivariate ordinal variable
(X1,X2, . . . ,Xn), ordered according to the structure of P, can be defined by means
of the Q structure. The co-domain (Q) of the map is a complete lattice (or even a
chain).

Definition: Let ðx1,x2, . . . ,xnÞ and ðy1,y2, . . . ,ynÞ be any couple of outcomes of
(X1,X2, . . . ,Xn), then a map is said to be order-preserving if ðx1, x2, . . . ,xnÞ �P

ðy1,y2, . . . ,ynÞ implies ’ðx1, x2, . . . , xnÞ �Q ’ðy1, y2, . . . , ynÞ, where �P and �Q are
respectively the order relations on P and Q.

To represent some processes, it may be reasonable to adopt a monotone map
function to link P with Q; see figure 3(b).

Definition: A monotone map function is an order-preserving map defined on a
complete lattice of all possible outcomes of an ordinal multivariate variable
(X1,X2, . . . ,Xn).

× =

X Y

MQ
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HQ
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LM

× =

High  (H)

X
Evaluation scale of the
noise of a car engine

Y
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MM
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HQ

HM

HV

LV 
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LM
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High (H)
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Low (L)

Evaluation scale of the
noise of a car fan

Very noisy (V)

Significantly noisy (S)

Quite noisy (Q)
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Very noisy (V)

Significantly noisy (S)

Quite noisy (Q)

Moderately
noisy (M)

Medium (M)

Low (L)

Figure 2. Hasse diagrams for the categories of the ordinal variables X (noise, car engine)
and Y (noise, car fan). The set of possible outcomes of the bivariate ordinal variable (X, Y) is
the Cartesian product X�Y.
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It is worthwhile stressing that a map function may also be no-order preserving.

Let us consider, for example, a company which is performing a test on the air

conditioning plant of its offices. The aim is to evaluate the performance of the plant

as it is perceived by the personnel. Each employee is asked to express his/her

judgement about the perceived humidity (X) and temperature (Y). Evaluations are

given on a three-level scale: ‘low’, ‘medium’ and ‘high’.
If we refer to the domain space P of the two-dimensional variable (X,Y),

HH dominates MM.
On the other hand, the most favourable condition is the one scoring ‘medium’

both for the humidity and for the temperature (i.e. MM). This situation is certainly

preferable to the case in which both the temperature and the humidity are ‘high’

(i.e. HH).
The resulting ordering in the co-domain space, after the application of the plant

manager map-function, implies that MM has to be preferred to HH. Therefore,

from the plant manager’s point of view, the adopted map function is non monotone

(see figure 4).

3. Synthesis maps for univariate ordinal variable

Many problems referring to the aggregation of a sample of outcomes from a

univariate ordinal variable can be rigorously analysed by lattice theory.
The approach is organized in five steps:

1. Sample definition.
2. Construction of an appropriate map function for aggregating the elements of

each single sample; such a function must be defined on the basis of the specific

P = X×Y Q 
ϕ

MQ

MS

MM

MVHS

HQ

HM
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MQ

MS
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HM

HV
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LM

P Q 
ϕ

(a) (b)

Figure 3. An example of a map function (a), and of a monotone map function (b).
The figure shows the finite set of all possible outcomes of the bivariate ordinal variable (X,Y)
noise evaluation of a car engine and a car fan, to the poset Q (L, low; M, medium; H, high;
M, Moderately noisy; Q, quite noisy; S, significantly noisy; V, very noisy).
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characteristics of the process and without introducing improper (numerical)

codifications.
3. Representation by a Hasse diagram.
4. Check of mathematical properties of the new ordinal variable defined in

the map function co-domain.
5. Analysis of results.

Let us consider, for example, the comparison of the performances of two different

manufacturing lines for the production of a mechanical component. The comparison

is carried out by evaluating the quality of the surface finishing of each component

by a visual control. For both treatments, every hour a sample of five parts is analysed.

The evaluation is given on a three-level scale: ‘low’, ‘medium’ and ‘high’.
The problem is synthesizing the information contained in the samples in order to

state which of the two processes is the most worthwhile. In this case the considered

ordinal variable is X, defined as the ‘product surface finishing’. The levels of variable

X are the total ordered set (chain) X: {low (L), medium (M), high (H)}. Each sample

of five elements can be seen as an element of the Cartesian product

Y5

i¼1

Xi ðsample spaceÞ:

This sample space can be represented by a 35 complete lattice.
In order to define an appropriate index for ordering the sample space elements,

a subset P0 of this space including all possible combinations of five elements of X
is considered (see figure 5).

In P0, all permutations of the same element combination are represented by

a unique reference sample. For example, HMHML and LHHMM are represented

by the sample HHMML. Subset P0 is a complete lattice (see figure 5).

P ≡ X × Y Q
ϕ

LH

LM

LL

MH

MM

ML

HH

HM

HL

Medium (M)

Medium (M)

High (H)

X (humidity)

Y (temperature)

High (H)

Low (L)

Low (L)

Figure 4. Hasse diagrams of the categories of the ordinal variables X and Y. The
non-monotone map function ’, defined by the plant manager according to the specific
characteristics of the process at hand, maps the set of all possible outcomes X�Y into the
chain Q.
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Table 1 shows the results of ten subsequent samples extracted from two manu-

facturing lines, named process � and process �.
As a first attempt to compare these two series of samples, a numerical

codification is introduced. This codification is arbitrary. Different codifications

determine different sample rank order (Franceschini et al. 2005).

HHMLL

HMMMM

HHMMM

HHHLL
HHMML

HMMML

HMMLL

HMLLL
HLLLL

MMMMM 

MMMML

MMMLL
MMLLL

MLLLL
LLLLL

HHHHH

HHLLL

P ′

HHHHM

HHHHL

HHHML

HHHMM

Figure 5. Reduced poset P0 (complete lattice) obtained by the contraction of the sample
space (35 elements) of the variable X for the evaluation of a ‘product surface finishing’.

Table 1. Ten samples of size 5 of the qualitative variable X drawn from two manufacturing
lines, namely process � and process �. Evaluations are given on a three-level scale: H, high;

M, medium; L, low.

Sample number Process � Process �

1 HHMMM HHLLL
2 HHHHL HHMMM
3 HHMMM HMMMM
4 HHHML HHMMM
5 HHMMM HHHHL
6 HHHML HHHHH
7 HHMMM HHHMM
8 HHHMM HHMMM
9 HHHHL HHMMM
10 HHHHM HHHHM
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Let us consider, for example, two codifications:

codification ðAÞ: Low¼ 0; medium¼ 1; high¼ 2;

codification ðBÞ: Low¼ 1; medium¼ 3; high ¼ 9:

Synthesizing by the arithmetic mean operator the results obtained in each
sample, sample MMMML achieves a higher score than sample HMLLL with
the first codification (A) and a lower score with the second codification (B)

(see figure 6).
We have to remember that the numerical codification and elaboration of ordinal

data is an improper operation (Roberts 1979, Franceschini and Romano 1999).
Figure 6 shows the behaviour of the arithmetic mean obtained by the

codifications A and B applied to the space P0. These two different codifications
sometimes give rise to contradictory results.

An alternative approach can be based on the use of synthesis indexes which only
utilize the ordinal properties of the measurement scale of variable X, for example,
the sample median. Figure 7 shows a graphical comparison between the two
lines according to the median index applied to the samples of table 1 near here
(Clifford 1959).

Even though the median is an operator coherent with ordinal scales property,
its efficacy is deeply conditioned by the dimension of the sample to which it is

applied and by the number of levels of the evaluation scale. Furthermore, the
median is insensitive to outliers. For discrete data that take on relatively few values,
quite different patterns of data can give the same result (Chakraborty and Chaudhuri
1999, Montgomery 2001). In the example at hand, very different samples give the
same median value.
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Figure 6. Mean indices A (low, 0; medium, 1; high, 2) and B (low, 1; medium, 3; high, 9)
evaluated on the combination space P0 for a sample size¼ 5. The levels of the ordinal variable
X are L, low; M, medium; H, high.
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Limitations highlighted for the median may be overcome by using a new index
based on the total ordering of P0. In effect, the median is only one of the possible
aggregation ‘logics’ that can be expressed by a map function ’.

A new ordering on P0 can be constructed by adopting a specific map function ’
(Franceschini et al. 2005). Referring to data in table 1, suppose that, according to the
peculiarities of our manufacturing process, we define an index according to which
any sample including a ‘low’ rating is considered worse than any sample that does
not include it. So, for example, HHHHL is worse than MMMMM. Samples which
do not include any ‘low’ are ordered according to the already existing ranking on P0.

This situation occurs in many contexts, in which the worst outcome is to be
avoided. Consider examples involving safety issues (a few minor conjures are more
acceptable than a single fatality), or cases in which a product falling into the worst
category must be completely scrapped and thus provides significant financial
losses to its producer.

This ‘no low’ criterion can be applied by using the map function ’ reported in
figure 8. The resulting totally ordered set Q (chain) is the outcome of its application.

The map function of figure 8 has been applied to data in table 1 near here for
the two analysed lines. The graphical behaviours of the two processes � and � are
reported in figure 9.

The graphical comparison between the two processes shows that process �
presents a synthesis index superior or equal to the one of process � in most of
samples (seven out of 10); moreover, for the process �, the value ‘low’ has been got
only twice and for the process � such a value has a very high frequency (50%). This
result is in stack contrast to that obtained using the median operator (see figure 7).
Comparing samples 2, 3 and 4, process � exceeds process � when using median
operator; the opposite happens when using the ‘no low’ criterion.

4. Synthesis maps for multivariate ordinal variable

Lattice theory can be also applied in problems dealing with the ‘synthesis’ of
components of a multivariate ordinal variable.
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Figure 7. Median index of the two manufacturing processes (see table 1).
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This problem can be approached as follows:

1. Construction of an appropriate map function for aggregating the variable
components; such a function must be defined on the basis of the specific
characteristics of the process and without introducing improper (numerical)
codifications.

2. Representation by a Hasse diagram.

P Q
ϕ
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Figure 8. Hasse diagram for the combination space P0 of a three categories (L, low;
M, medium; H, high) ordinal variable X (sample size, 5). The monotone map function ’ maps
from P0 to the chain Q according to the ‘no-low’ criterion.
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Figure 9. Ordinal Indexes for the two manufacturing processes.
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3. Check of mathematical properties of the new ordinal variable defined in the

map function co-domain.
4. Analysis of results.

Let us consider, for example, the following application case. A firm in the

automotive field decided to analyse customer satisfaction by means of a survey.

Each customer was asked to evaluate conjointly the performance and the satisfaction

about the optional equipment (electric overdrive unit, air conditioning, compact

disc player, etc.) of her/his new car on a three-category ordinal scale. The

performance might be judged as ‘poor’, ‘normal’, or ‘high’ whereas the optional

equipment is evaluated as ‘moderately satisfactory’, ‘quite satisfactory’ and ‘very

satisfactory’.
Some problems can arise considering conjointly these two ordinal variables.

It seems reasonable that a car with poor performances and moderately satisfactory

optional equipment represents the worst case. However, taking into account

also the price of the car we can say that very satisfactory optional equipment

accomplished by poor performance is disproportionate and also expensive. In other

words, if a customer buys a cheap car with poor performance, perhaps he does not

want many options in order to avoid an unnecessary expense. On the other hand,

a car with high performance is very expensive, thus a moderately satisfactory

judgement about the optional equipment involves poor satisfaction for the customer.

Let us consider the two-dimensional ordinal variable (X,Y) representing judgements

of the customers about the performances and optional equipment of their cars.

A ‘possible’ map function that could be applied to the set of all possible outcomes

of the bivariate variable is shown in figure 10.
The used map function allows interpreting the ordering criterion without

resorting to any arbitrary numerical codification of scale levels.
Let us consider the data collected during 6 months on samples of 800 customers,

summarised by the relative frequency distributions of a two-dimensional ordinal

variable (X,Y) as shown in table 2 near here (Bassotto et al. 2005).

Q 
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NQ
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HV

NV

PV

Y (optimal
equipment)

X (performances)

High (H)

Normal (N)

Poor (P)

Very satisfactory (V)

Quite satisfactory 

Moderately satisfactory

P = X×Y

Figure 10. Non-order-preserving map function for a customer satisfaction survey (P, poor;
N, normal; H, high; M, moderately satisfactory; Q, quite satisfactory; V, very satisfactory).
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For each month, a synthesis index consistent with ordinal properties of the
variable (X, Y) is calculated (see section 3). Table 3 shows the obtained results.

Data reported in table 3 can be represented by a two-dimensional diagram:
‘optimal equipment’ versus ‘performance’. The sequence over time of the synthesis
index values (index path) can be represented by oriented arcs drawn through the
quadrants of that diagram. Figure 11 shows the map of the index path through
quadrants during the 6 month observation.

The synthesis index of the new univariate variable (chain Q), obtained by
ordering the two-dimensional space of the ordinal variable (X,Y), can be considered
as an ‘ordinal index’ able to interpret the trend of customer multiattribute preference.
The diagram in figure 11 describes the path in the X�Y space, but does not give any
indication about the evolution over time. To complete this information, figure 12
shows the behaviour over time of the index values for the samples analysed in the
6 months experimentation. Increasing or decreasing customer preference is observ-
able on the nine-level ordinal scale described by the map function of figure 10.

A numerical encoding of the two components of the bivariate variable (X,Y)
introduces additional properties (for example, interval properties) that could
produce anomalous results.

Table 2. Relative frequency values of a two-dimensional ordinal variable (X,Y)
(see figure 10). (X,Y) provides customer evaluations of the performances and options of a new
car. Data refer to samples of 800 customers interviewed during 6 months (P, poor; N, normal;

H, high; M, moderately satisfactory; Q, quite satisfactory; V, very satisfactory).

(X,Y) Ranking in Q
1st month
frequency

2nd month
frequency

3rd month
frequency

4th month
frequency

5th month
frequency

6th month
frequency

HV 1 0.03 0.02 0.08 0.17 0.08 0.03
NV 2 0.25 0.27 0.10 0.03 0.11 0.24
HQ 3 0.28 0.28 0.11 0.18 0.20 0.25
NQ 4 0.00 0.00 0.08 0.21 0.09 0.00
PM 5 0.04 0.03 0.25 0.14 0.13 0.05
NM 6 0.11 0.12 0.18 0.14 0.04 0.12
PQ 7 0.20 0.18 0.08 0.02 0.16 0.22
HM 8 0.09 0.09 0.11 0.03 0.13 0.08
PV 9 0.00 0.01 0.02 0.08 0.05 0.01

Total 1.00 1.00 1.00 1.00 1.00 1.00

Table 3. Month synthesis values for the samples of table 2.
Data refer to samples of customers interviewed during

6 months.

Month Sample synthesis index

1st month HQ
2nd month HQ
3rd month PM
4th month NQ
5th month PM
6th month HQ
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For example, let us consider the following encoding:

P ¼ 0; N ¼ 1; H ¼ 2; M ¼ 0; Q ¼ 1; V ¼ 2:

If we map by the arithmetic sum operator all possible outcomes of the bivariate
variable (X,Y) into a new ordered univariate variable, we observe that the outcome
NQ achieves the same score as outcomes HM and PV. Adopting the quadratic sum
operator it obtains a lower score.

PM NM HM

PQ NQ HQ 

PV NV HV 

Performances

Optional equipment 

Figure 11. Path of the synthesis index of the univariate variable distribution obtained by
ordering the two-dimensional space of the ordinal variable (X,Y) (see figure 10). Data refer to
samples of 800 customers interviewed during 6 months.

1 2 3 4 5 6

Ordinal index

HV

HQ

PM

PV

HM

NM

PQ

NQ

NV

Time (months)

R
an

k

Figure 12. Behaviour over time of the synthesis index of the univariate variable distributions
obtained by the ordering of the two-dimensional sample space of the ordinal variable (X,Y)
(see map function of figure 10). Data refer to samples of 800 customers interviewed during
6 months.
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In general, other mapping functions can be applied without violating the original
properties of the bivariate ordinal variable (X,Y). That proposed is one of many,
built according to our specific need. They can all be studied and analysed using the
lattice theory approach (Tukey 1975, Barnett 1976).

5. Conclusions

Multidimensional ordinal structures are widely considered when dealing with ordinal
variables in multidimensional problems both in engineering applications and in
social/economics sciences.

This paper introduces a new methodology for the construction of synthesis
indices based only on the ordinal proprieties of multidimensional ordinal structures.
The algebraic theory of the ordered sets can be effectively applied to rank the
sample space of a multivariate ordinal variable. Defining adequate functions
(map functions) from finite sets into chains, a decision-maker can establish specific
rankings in the multidimensional structures, namely, new ordinal indices.

The main characteristics of the proposed methodology are the following:

. The information about different components of a multidimensional structure
can be summarized by a single ordinal non-numeric index defined on an
ordered set.

. No numerical conversion of the ordinal scale levels is required.

. The ranking criterion is defined according to the ‘physics’ of the problem
or to the objective of the decision-maker.

. The behaviour of the synthesis index can be detected and analysed over time.

. The variable sets can be described by a multidimensional graph (Hasse
diagram), which facilitate the interpretation of the multidimensional ordinal
structure.

Furthermore, the paper presents some application examples in which an organic
comparison between the considered synthesis operators and the classical approaches
is performed. It must be highlighted that traditional operators (such as, for example,
the median) can be considered themselves particular examples of map functions.

The comparison shows that operators based on some arbitrary numerical
conversions present contradictory results. On the contrary, the proposed method is
coherent with the original properties of the ordinal scales.

Future developments of the research will regard the application of the lattice
theory to multi-attribute decision-making models. The aim is the modelization,
in terms of map functions, of criteria weights (Zopounidis and Doumpos 2003).
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